Metamath Proof Explorer


Theorem elrpii

Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008)

Ref Expression
Hypotheses elrpi.1 𝐴 ∈ ℝ
elrpi.2 0 < 𝐴
Assertion elrpii 𝐴 ∈ ℝ+

Proof

Step Hyp Ref Expression
1 elrpi.1 𝐴 ∈ ℝ
2 elrpi.2 0 < 𝐴
3 elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
4 1 2 3 mpbir2an 𝐴 ∈ ℝ+