| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrspsn.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | elrspsn.2 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | elrspsn.3 | ⊢ 𝐾  =  ( RSpan ‘ 𝑅 ) | 
						
							| 4 |  | rlmlmod | ⊢ ( 𝑅  ∈  Ring  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 | 5 1 | eleqtrdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 9 |  | rlmbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 10 |  | rlmvsca | ⊢ ( .r ‘ 𝑅 )  =  (  ·𝑠  ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 11 | 2 10 | eqtri | ⊢  ·   =  (  ·𝑠  ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 12 |  | rspval | ⊢ ( RSpan ‘ 𝑅 )  =  ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 13 | 3 12 | eqtri | ⊢ 𝐾  =  ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 14 | 7 8 9 11 13 | ellspsn | ⊢ ( ( ( ringLMod ‘ 𝑅 )  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼  ∈  ( 𝐾 ‘ { 𝑋 } )  ↔  ∃ 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼  =  ( 𝑥  ·  𝑋 ) ) ) | 
						
							| 15 | 4 6 14 | syl2an2r | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼  ∈  ( 𝐾 ‘ { 𝑋 } )  ↔  ∃ 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼  =  ( 𝑥  ·  𝑋 ) ) ) | 
						
							| 16 |  | rlmsca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) ) | 
						
							| 19 | 1 18 | eqtr2id | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) )  =  𝐵 ) | 
						
							| 20 | 19 | rexeqdv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼  =  ( 𝑥  ·  𝑋 )  ↔  ∃ 𝑥  ∈  𝐵 𝐼  =  ( 𝑥  ·  𝑋 ) ) ) | 
						
							| 21 | 15 20 | bitrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼  ∈  ( 𝐾 ‘ { 𝑋 } )  ↔  ∃ 𝑥  ∈  𝐵 𝐼  =  ( 𝑥  ·  𝑋 ) ) ) |