Metamath Proof Explorer


Theorem elsb2

Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023)

Ref Expression
Assertion elsb2 ( [ 𝑦 / 𝑥 ] 𝑧𝑥𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 elequ2 ( 𝑥 = 𝑤 → ( 𝑧𝑥𝑧𝑤 ) )
2 elequ2 ( 𝑤 = 𝑦 → ( 𝑧𝑤𝑧𝑦 ) )
3 1 2 sbievw2 ( [ 𝑦 / 𝑥 ] 𝑧𝑥𝑧𝑦 )