Description: A morphism of sets is a function. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| setchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| setchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | elsetchom | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | setchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | setchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | 1 2 3 4 5 | setchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ) ) |
| 8 | 5 4 | elmapd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 9 | 7 8 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |