Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. (Contributed by NM, 13-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elsn.1 | ⊢ 𝐴 ∈ V | |
| Assertion | elsn | ⊢ ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn.1 | ⊢ 𝐴 ∈ V | |
| 2 | elsng | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) |