Metamath Proof Explorer


Theorem elsn2g

Description: There is exactly one element in a singleton. Exercise 2 of TakeutiZaring p. 15. This variation requires only that B , rather than A , be a set. (Contributed by NM, 28-Oct-2003)

Ref Expression
Assertion elsn2g ( 𝐵𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elsni ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 )
2 snidg ( 𝐵𝑉𝐵 ∈ { 𝐵 } )
3 eleq1 ( 𝐴 = 𝐵 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐵 ∈ { 𝐵 } ) )
4 2 3 syl5ibrcom ( 𝐵𝑉 → ( 𝐴 = 𝐵𝐴 ∈ { 𝐵 } ) )
5 1 4 impbid2 ( 𝐵𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )