Description: A member of a span is a vector. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elspancl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ∈ ( span ‘ 𝐴 ) ) → 𝐵 ∈ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spancl | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ Sℋ ) | |
2 | shel | ⊢ ( ( ( span ‘ 𝐴 ) ∈ Sℋ ∧ 𝐵 ∈ ( span ‘ 𝐴 ) ) → 𝐵 ∈ ℋ ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ∈ ( span ‘ 𝐴 ) ) → 𝐵 ∈ ℋ ) |