Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → { 𝐴 } = { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( span ‘ { 𝐴 } ) = ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝑥 ·ℎ 𝐴 ) = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ↔ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
7 |
3 6
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) ↔ ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
8 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
9 |
8
|
elspansni |
⊢ ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
10 |
7 9
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) ) |