| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  { 𝐴 }  =  { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( 𝐵  ∈  ( span ‘ { 𝐴 } )  ↔  𝐵  ∈  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( 𝑥  ·ℎ  𝐴 )  =  ( 𝑥  ·ℎ  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqeq2d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( 𝐵  =  ( 𝑥  ·ℎ  𝐴 )  ↔  𝐵  =  ( 𝑥  ·ℎ  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rexbidv | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  𝐴 )  ↔  ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							bibi12d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( 𝐵  ∈  ( span ‘ { 𝐴 } )  ↔  ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  𝐴 ) )  ↔  ( 𝐵  ∈  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } )  ↔  ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ifhvhv0 | 
							⊢ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ∈   ℋ  | 
						
						
							| 9 | 
							
								8
							 | 
							elspansni | 
							⊢ ( 𝐵  ∈  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } )  ↔  ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							dedth | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐵  ∈  ( span ‘ { 𝐴 } )  ↔  ∃ 𝑥  ∈  ℂ 𝐵  =  ( 𝑥  ·ℎ  𝐴 ) ) )  |