Step |
Hyp |
Ref |
Expression |
1 |
|
elspansn3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐶 ∈ 𝐴 ) |
2 |
1
|
3exp |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ 𝐴 → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → 𝐶 ∈ 𝐴 ) ) ) |
3 |
2
|
com23 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
5 |
4
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
6 |
|
spansnid |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) |
8 |
|
spansneleq |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( span ‘ { 𝐶 } ) = ( span ‘ { 𝐵 } ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → ( span ‘ { 𝐶 } ) = ( span ‘ { 𝐵 } ) ) |
10 |
7 9
|
eleqtrrd |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ ( span ‘ { 𝐶 } ) ) |
11 |
|
elspansn3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ ( span ‘ { 𝐶 } ) ) → 𝐵 ∈ 𝐴 ) |
12 |
11
|
3expia |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ ( span ‘ { 𝐶 } ) → 𝐵 ∈ 𝐴 ) ) |
13 |
10 12
|
syl5 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ 𝐴 ) ) |
14 |
13
|
exp4b |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ 𝐴 → ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → 𝐵 ∈ 𝐴 ) ) ) ) |
15 |
14
|
com24 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
16 |
15
|
exp4a |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐵 ∈ ℋ → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) ) |
17 |
16
|
com23 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) ) |
18 |
17
|
imp43 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
19 |
5 18
|
impbid |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |