Step |
Hyp |
Ref |
Expression |
1 |
|
elspansn4 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
2 |
1
|
biimprd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
3 |
2
|
exp32 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
4 |
3
|
com34 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) ) |
5 |
4
|
imp32 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) |
6 |
5
|
necon1bd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐶 = 0ℎ ) ) |
7 |
6
|
exp31 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐶 = 0ℎ ) ) ) ) |
8 |
7
|
com34 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( ¬ 𝐵 ∈ 𝐴 → ( ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 = 0ℎ ) ) ) ) |
9 |
8
|
imp4c |
⊢ ( 𝐴 ∈ Sℋ → ( ( ( 𝐵 ∈ ℋ ∧ ¬ 𝐵 ∈ 𝐴 ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 = 0ℎ ) ) |