Metamath Proof Explorer


Theorem elspansncl

Description: A member of a span of a singleton is a vector. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansncl ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ )
2 elspancl ( ( { 𝐴 } ⊆ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ )
3 1 2 sylan ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → 𝐵 ∈ ℋ )