Description: Membership in the span of a singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spansn.1 | ⊢ 𝐴 ∈ ℋ | |
| Assertion | elspansni | ⊢ ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansn.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | 1 | spansni | ⊢ ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) | 
| 3 | 2 | eleq2i | ⊢ ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | 
| 4 | 1 | h1de2ci | ⊢ ( 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) | 
| 5 | 3 4 | bitri | ⊢ ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) |