Metamath Proof Explorer


Theorem elss2prb

Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion elss2prb ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) )

Proof

Step Hyp Ref Expression
1 fveqeq2 ( 𝑧 = 𝑃 → ( ( ♯ ‘ 𝑧 ) = 2 ↔ ( ♯ ‘ 𝑃 ) = 2 ) )
2 1 elrab ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) )
3 hash2prb ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ∃ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
4 elpwi ( 𝑃 ∈ 𝒫 𝑉𝑃𝑉 )
5 ssrexv ( 𝑃𝑉 → ( ∃ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥𝑉𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
6 4 5 syl ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥𝑉𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
7 ssrexv ( 𝑃𝑉 → ( ∃ 𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
8 4 7 syl ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
9 8 reximdv ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥𝑉𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
10 6 9 syld ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
11 3 10 sylbid ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) )
12 11 imp ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) )
13 prelpwi ( ( 𝑥𝑉𝑦𝑉 ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 )
14 13 adantr ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 )
15 eleq1 ( 𝑃 = { 𝑥 , 𝑦 } → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) )
16 15 ad2antll ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) )
17 14 16 mpbird ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → 𝑃 ∈ 𝒫 𝑉 )
18 fveq2 ( 𝑃 = { 𝑥 , 𝑦 } → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) )
19 18 ad2antll ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) )
20 hashprg ( ( 𝑥𝑉𝑦𝑉 ) → ( 𝑥𝑦 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) )
21 20 biimpcd ( 𝑥𝑦 → ( ( 𝑥𝑉𝑦𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) )
22 21 adantr ( ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑥𝑉𝑦𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) )
23 22 impcom ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 )
24 19 23 eqtrd ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = 2 )
25 17 24 jca ( ( ( 𝑥𝑉𝑦𝑉 ) ∧ ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) )
26 25 ex ( ( 𝑥𝑉𝑦𝑉 ) → ( ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) )
27 26 rexlimivv ( ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) )
28 12 27 impbii ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ↔ ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) )
29 2 28 bitri ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦𝑃 = { 𝑥 , 𝑦 } ) )