Metamath Proof Explorer


Theorem elssabg

Description: Membership in a class abstraction involving a subset. Unlike elabg , A does not have to be a set. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elssabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elssabg ( 𝐵𝑉 → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ( 𝐴𝐵𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 elssabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
3 2 expcom ( 𝐵𝑉 → ( 𝐴𝐵𝐴 ∈ V ) )
4 3 adantrd ( 𝐵𝑉 → ( ( 𝐴𝐵𝜓 ) → 𝐴 ∈ V ) )
5 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
6 5 1 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
7 6 elab3g ( ( ( 𝐴𝐵𝜓 ) → 𝐴 ∈ V ) → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ( 𝐴𝐵𝜓 ) ) )
8 4 7 syl ( 𝐵𝑉 → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ( 𝐴𝐵𝜓 ) ) )