Description: Membership in a class abstraction involving a subset. Unlike elabg , A does not have to be a set. (Contributed by NM, 29-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elssabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | elssabg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝜑 ) } ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
3 | 2 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) ) |
4 | 3 | adantrd | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) → 𝐴 ∈ V ) ) |
5 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
6 | 5 1 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) ) ) |
7 | 6 | elab3g | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) → 𝐴 ∈ V ) → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝜑 ) } ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) ) ) |
8 | 4 7 | syl | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝜑 ) } ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝜓 ) ) ) |