Metamath Proof Explorer


Theorem elsuc2g

Description: Variant of membership in a successor, requiring that B rather than A be a set. (Contributed by NM, 28-Oct-2003)

Ref Expression
Assertion elsuc2g ( 𝐵𝑉 → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐵 = ( 𝐵 ∪ { 𝐵 } )
2 1 eleq2i ( 𝐴 ∈ suc 𝐵𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) )
3 elun ( 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ↔ ( 𝐴𝐵𝐴 ∈ { 𝐵 } ) )
4 elsn2g ( 𝐵𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
5 4 orbi2d ( 𝐵𝑉 → ( ( 𝐴𝐵𝐴 ∈ { 𝐵 } ) ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
6 3 5 syl5bb ( 𝐵𝑉 → ( 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
7 2 6 syl5bb ( 𝐵𝑉 → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )