Description: Membership in a successor. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 15-Sep-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | elsucg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc | ⊢ suc 𝐵 = ( 𝐵 ∪ { 𝐵 } ) | |
2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ) |
3 | elun | ⊢ ( 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) ) | |
4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) ) |
5 | elsng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
6 | 5 | orbi2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
7 | 4 6 | syl5bb | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |