Metamath Proof Explorer


Theorem elsuci

Description: Membership in a successor. This one-way implication does not require that either A or B be sets. (Contributed by NM, 6-Jun-1994)

Ref Expression
Assertion elsuci ( 𝐴 ∈ suc 𝐵 → ( 𝐴𝐵𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐵 = ( 𝐵 ∪ { 𝐵 } )
2 1 eleq2i ( 𝐴 ∈ suc 𝐵𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) )
3 elun ( 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ↔ ( 𝐴𝐵𝐴 ∈ { 𝐵 } ) )
4 2 3 bitri ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴𝐵𝐴 ∈ { 𝐵 } ) )
5 elsni ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 )
6 5 orim2i ( ( 𝐴𝐵𝐴 ∈ { 𝐵 } ) → ( 𝐴𝐵𝐴 = 𝐵 ) )
7 4 6 sylbi ( 𝐴 ∈ suc 𝐵 → ( 𝐴𝐵𝐴 = 𝐵 ) )