Description: Membership in a successor. This one-way implication does not require that either A or B be sets. Lemma 1.13 of Schloeder p. 2. (Contributed by NM, 6-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsuci | ⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | ⊢ suc 𝐵 = ( 𝐵 ∪ { 𝐵 } ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ) |
| 3 | elun | ⊢ ( 𝐴 ∈ ( 𝐵 ∪ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) ) |
| 5 | elsni | ⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) | |
| 6 | 5 | orim2i | ⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 ∈ { 𝐵 } ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 7 | 4 6 | sylbi | ⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |