Metamath Proof Explorer


Theorem elsymdif

Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion elsymdif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ¬ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝐴 ∈ ( ( 𝐵𝐶 ) ∪ ( 𝐶𝐵 ) ) ↔ ( 𝐴 ∈ ( 𝐵𝐶 ) ∨ 𝐴 ∈ ( 𝐶𝐵 ) ) )
2 eldif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )
3 eldif ( 𝐴 ∈ ( 𝐶𝐵 ) ↔ ( 𝐴𝐶 ∧ ¬ 𝐴𝐵 ) )
4 2 3 orbi12i ( ( 𝐴 ∈ ( 𝐵𝐶 ) ∨ 𝐴 ∈ ( 𝐶𝐵 ) ) ↔ ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ∨ ( 𝐴𝐶 ∧ ¬ 𝐴𝐵 ) ) )
5 1 4 bitri ( 𝐴 ∈ ( ( 𝐵𝐶 ) ∪ ( 𝐶𝐵 ) ) ↔ ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ∨ ( 𝐴𝐶 ∧ ¬ 𝐴𝐵 ) ) )
6 df-symdif ( 𝐵𝐶 ) = ( ( 𝐵𝐶 ) ∪ ( 𝐶𝐵 ) )
7 6 eleq2i ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ 𝐴 ∈ ( ( 𝐵𝐶 ) ∪ ( 𝐶𝐵 ) ) )
8 xor ( ¬ ( 𝐴𝐵𝐴𝐶 ) ↔ ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ∨ ( 𝐴𝐶 ∧ ¬ 𝐴𝐵 ) ) )
9 5 7 8 3bitr4i ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ¬ ( 𝐴𝐵𝐴𝐶 ) )