| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elun | ⊢ ( 𝐴  ∈  ( ( 𝐵  ∖  𝐶 )  ∪  ( 𝐶  ∖  𝐵 ) )  ↔  ( 𝐴  ∈  ( 𝐵  ∖  𝐶 )  ∨  𝐴  ∈  ( 𝐶  ∖  𝐵 ) ) ) | 
						
							| 2 |  | eldif | ⊢ ( 𝐴  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 ) ) | 
						
							| 3 |  | eldif | ⊢ ( 𝐴  ∈  ( 𝐶  ∖  𝐵 )  ↔  ( 𝐴  ∈  𝐶  ∧  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 4 | 2 3 | orbi12i | ⊢ ( ( 𝐴  ∈  ( 𝐵  ∖  𝐶 )  ∨  𝐴  ∈  ( 𝐶  ∖  𝐵 ) )  ↔  ( ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 )  ∨  ( 𝐴  ∈  𝐶  ∧  ¬  𝐴  ∈  𝐵 ) ) ) | 
						
							| 5 | 1 4 | bitri | ⊢ ( 𝐴  ∈  ( ( 𝐵  ∖  𝐶 )  ∪  ( 𝐶  ∖  𝐵 ) )  ↔  ( ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 )  ∨  ( 𝐴  ∈  𝐶  ∧  ¬  𝐴  ∈  𝐵 ) ) ) | 
						
							| 6 |  | df-symdif | ⊢ ( 𝐵  △  𝐶 )  =  ( ( 𝐵  ∖  𝐶 )  ∪  ( 𝐶  ∖  𝐵 ) ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( 𝐴  ∈  ( 𝐵  △  𝐶 )  ↔  𝐴  ∈  ( ( 𝐵  ∖  𝐶 )  ∪  ( 𝐶  ∖  𝐵 ) ) ) | 
						
							| 8 |  | xor | ⊢ ( ¬  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  𝐶 )  ↔  ( ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 )  ∨  ( 𝐴  ∈  𝐶  ∧  ¬  𝐴  ∈  𝐵 ) ) ) | 
						
							| 9 | 5 7 8 | 3bitr4i | ⊢ ( 𝐴  ∈  ( 𝐵  △  𝐶 )  ↔  ¬  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  𝐶 ) ) |