| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elun |
⊢ ( 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ∨ 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ) ) |
| 2 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) |
| 3 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) |
| 4 |
2 3
|
orbi12i |
⊢ ( ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ∨ 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) |
| 5 |
1 4
|
bitri |
⊢ ( 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) |
| 6 |
|
df-symdif |
⊢ ( 𝐵 △ 𝐶 ) = ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) |
| 7 |
6
|
eleq2i |
⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ) |
| 8 |
|
xor |
⊢ ( ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) |
| 9 |
5 7 8
|
3bitr4i |
⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) |