Metamath Proof Explorer


Theorem elsymdifxor

Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020) (Proof shortened by BJ, 13-Aug-2022)

Ref Expression
Assertion elsymdifxor ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elsymdif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ¬ ( 𝐴𝐵𝐴𝐶 ) )
2 df-xor ( ( 𝐴𝐵𝐴𝐶 ) ↔ ¬ ( 𝐴𝐵𝐴𝐶 ) )
3 1 2 bitr4i ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )