Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
elex |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ V ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 → 𝐹 ∈ V ) ) |
5 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) |
6 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
7 |
6
|
expcom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : 𝐴 ⟶ 𝐴 → 𝐹 ∈ V ) ) |
8 |
5 7
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 ∈ V ) ) |
9 |
1 2
|
elsymgbas2 |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
10 |
9
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ V → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) ) |
11 |
4 8 10
|
pm5.21ndd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |