Metamath Proof Explorer


Theorem elsymgbas2

Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion elsymgbas2 ( 𝐹𝑉 → ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 ) )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 f1oeq1 ( 𝑥 = 𝐹 → ( 𝑥 : 𝐴1-1-onto𝐴𝐹 : 𝐴1-1-onto𝐴 ) )
4 1 2 symgbas 𝐵 = { 𝑥𝑥 : 𝐴1-1-onto𝐴 }
5 3 4 elab2g ( 𝐹𝑉 → ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 ) )