Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
Assertion | elsymgbas2 | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
3 | f1oeq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) | |
4 | 1 2 | symgbas | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } |
5 | 3 4 | elab2g | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |