Metamath Proof Explorer


Theorem eltayl

Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
taylfval.a ( 𝜑𝐴𝑆 )
taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
Assertion eltayl ( 𝜑 → ( 𝑋 𝑇 𝑌 ↔ ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 taylfval.a ( 𝜑𝐴𝑆 )
4 taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
5 taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
6 taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
7 1 2 3 4 5 6 taylfval ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
8 7 eleq2d ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑇 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )
9 df-br ( 𝑋 𝑇 𝑌 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑇 )
10 9 bicomi ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑇𝑋 𝑇 𝑌 )
11 oveq1 ( 𝑥 = 𝑋 → ( 𝑥𝐵 ) = ( 𝑋𝐵 ) )
12 11 oveq1d ( 𝑥 = 𝑋 → ( ( 𝑥𝐵 ) ↑ 𝑘 ) = ( ( 𝑋𝐵 ) ↑ 𝑘 ) )
13 12 oveq2d ( 𝑥 = 𝑋 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) )
14 13 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) ) )
15 14 oveq2d ( 𝑥 = 𝑋 → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) ) ) )
16 15 opeliunxp2 ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) ) ) ) )
17 8 10 16 3bitr3g ( 𝜑 → ( 𝑋 𝑇 𝑌 ↔ ( 𝑋 ∈ ℂ ∧ 𝑌 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )