| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eltg2 |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑥 ∈ 𝑦 ) |
| 3 |
2
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 4 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) |
| 5 |
3 4
|
sylibr |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
| 6 |
5
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) |
| 7 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) |
| 8 |
6 7
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ⊆ ∪ 𝐵 ) |
| 9 |
8
|
pm4.71ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 10 |
1 9
|
bitr4di |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |