| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) |
| 2 |
|
inex1g |
⊢ ( 𝐵 ∈ dom topGen → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) |
| 4 |
|
eltg4i |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 5 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵 |
| 6 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵 ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐵 ) |
| 8 |
7
|
biantrurd |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = ∪ 𝑥 ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) ) |
| 9 |
|
unieq |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ∪ 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 11 |
8 10
|
bitr3d |
⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ↔ 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 12 |
3 4 11
|
spcedv |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) |
| 13 |
|
eltg3i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵 ) → ∪ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝐴 = ∪ 𝑥 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∪ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 15 |
13 14
|
syl5ibrcom |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐴 = ∪ 𝑥 → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 16 |
15
|
expimpd |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 17 |
16
|
exlimdv |
⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 18 |
12 17
|
impbid2 |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) ) |