Metamath Proof Explorer


Theorem eltg3

Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006) (Proof shortened by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion eltg3 ( 𝐵𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝐴 = 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen )
2 inex1g ( 𝐵 ∈ dom topGen → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V )
3 1 2 syl ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V )
4 eltg4i ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ( 𝐵 ∩ 𝒫 𝐴 ) )
5 inss1 ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵
6 sseq1 ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝑥𝐵 ↔ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵 ) )
7 5 6 mpbiri ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → 𝑥𝐵 )
8 7 biantrurd ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = 𝑥 ↔ ( 𝑥𝐵𝐴 = 𝑥 ) ) )
9 unieq ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) )
10 9 eqeq2d ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = 𝑥𝐴 = ( 𝐵 ∩ 𝒫 𝐴 ) ) )
11 8 10 bitr3d ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( ( 𝑥𝐵𝐴 = 𝑥 ) ↔ 𝐴 = ( 𝐵 ∩ 𝒫 𝐴 ) ) )
12 3 4 11 spcedv ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ∃ 𝑥 ( 𝑥𝐵𝐴 = 𝑥 ) )
13 eltg3i ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) )
14 eleq1 ( 𝐴 = 𝑥 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
15 13 14 syl5ibrcom ( ( 𝐵𝑉𝑥𝐵 ) → ( 𝐴 = 𝑥𝐴 ∈ ( topGen ‘ 𝐵 ) ) )
16 15 expimpd ( 𝐵𝑉 → ( ( 𝑥𝐵𝐴 = 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) )
17 16 exlimdv ( 𝐵𝑉 → ( ∃ 𝑥 ( 𝑥𝐵𝐴 = 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) )
18 12 17 impbid2 ( 𝐵𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝐴 = 𝑥 ) ) )