Metamath Proof Explorer


Theorem eltg3i

Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion eltg3i ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴𝐵 )
2 pwuni 𝐴 ⊆ 𝒫 𝐴
3 ssin ( ( 𝐴𝐵𝐴 ⊆ 𝒫 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∩ 𝒫 𝐴 ) )
4 1 2 3 sylanblc ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴 ⊆ ( 𝐵 ∩ 𝒫 𝐴 ) )
5 4 unissd ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) )
6 eltg ( 𝐵𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) ) )
7 6 adantr ( ( 𝐵𝑉𝐴𝐵 ) → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) ) )
8 5 7 mpbird ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) )