| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) |
| 2 |
|
eltg |
⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 4 |
3
|
ibi |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 5 |
|
inss2 |
⊢ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 |
| 6 |
5
|
unissi |
⊢ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ ∪ 𝒫 𝐴 |
| 7 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 8 |
6 7
|
sseqtri |
⊢ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴 |
| 9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴 ) |
| 10 |
4 9
|
eqssd |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |