Metamath Proof Explorer


Theorem eltg4i

Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion eltg4i ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ( 𝐵 ∩ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen )
2 eltg ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) ) )
3 1 2 syl ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) ) )
4 3 ibi ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 ( 𝐵 ∩ 𝒫 𝐴 ) )
5 inss2 ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴
6 5 unissi ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴
7 unipw 𝒫 𝐴 = 𝐴
8 6 7 sseqtri ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴
9 8 a1i ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴 )
10 4 9 eqssd ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ( 𝐵 ∩ 𝒫 𝐴 ) )