Metamath Proof Explorer


Theorem eltop3

Description: Membership in a topology. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop3 ( 𝐽 ∈ Top → ( 𝐴𝐽 ↔ ∃ 𝑥 ( 𝑥𝐽𝐴 = 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 tgtop ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )
2 1 eleq2d ( 𝐽 ∈ Top → ( 𝐴 ∈ ( topGen ‘ 𝐽 ) ↔ 𝐴𝐽 ) )
3 eltg3 ( 𝐽 ∈ Top → ( 𝐴 ∈ ( topGen ‘ 𝐽 ) ↔ ∃ 𝑥 ( 𝑥𝐽𝐴 = 𝑥 ) ) )
4 2 3 bitr3d ( 𝐽 ∈ Top → ( 𝐴𝐽 ↔ ∃ 𝑥 ( 𝑥𝐽𝐴 = 𝑥 ) ) )