Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012) (Revised by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eltpsi.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } | |
eltpsi.u | ⊢ 𝐴 = ∪ 𝐽 | ||
eltpsi.j | ⊢ 𝐽 ∈ Top | ||
Assertion | eltpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpsi.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } | |
2 | eltpsi.u | ⊢ 𝐴 = ∪ 𝐽 | |
3 | eltpsi.j | ⊢ 𝐽 ∈ Top | |
4 | 2 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
5 | 3 4 | mpbi | ⊢ 𝐽 ∈ ( TopOn ‘ 𝐴 ) |
6 | 1 | eltpsg | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp ) |
7 | 5 6 | ax-mp | ⊢ 𝐾 ∈ TopSp |