Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltrrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ TrRels ↔ TrRel 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) ) | 
| 3 | eltrrels2 | ⊢ ( 𝑅 ∈ TrRels ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) | |
| 4 | dftrrel2 | ⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ TrRels ↔ TrRel 𝑅 ) ) |