Metamath Proof Explorer


Theorem eltskg

Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion eltskg ( 𝑇𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧𝑇 ( 𝒫 𝑧𝑇 ∧ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧𝑇𝑧𝑇 ) ) ) )

Proof

Step Hyp Ref Expression
1 sseq2 ( 𝑦 = 𝑇 → ( 𝒫 𝑧𝑦 ↔ 𝒫 𝑧𝑇 ) )
2 rexeq ( 𝑦 = 𝑇 → ( ∃ 𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) )
3 1 2 anbi12d ( 𝑦 = 𝑇 → ( ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ↔ ( 𝒫 𝑧𝑇 ∧ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) ) )
4 3 raleqbi1dv ( 𝑦 = 𝑇 → ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ↔ ∀ 𝑧𝑇 ( 𝒫 𝑧𝑇 ∧ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) ) )
5 pweq ( 𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇 )
6 breq2 ( 𝑦 = 𝑇 → ( 𝑧𝑦𝑧𝑇 ) )
7 eleq2 ( 𝑦 = 𝑇 → ( 𝑧𝑦𝑧𝑇 ) )
8 6 7 orbi12d ( 𝑦 = 𝑇 → ( ( 𝑧𝑦𝑧𝑦 ) ↔ ( 𝑧𝑇𝑧𝑇 ) ) )
9 5 8 raleqbidv ( 𝑦 = 𝑇 → ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧𝑇𝑧𝑇 ) ) )
10 4 9 anbi12d ( 𝑦 = 𝑇 → ( ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) ↔ ( ∀ 𝑧𝑇 ( 𝒫 𝑧𝑇 ∧ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧𝑇𝑧𝑇 ) ) ) )
11 df-tsk Tarski = { 𝑦 ∣ ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) }
12 10 11 elab2g ( 𝑇𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧𝑇 ( 𝒫 𝑧𝑇 ∧ ∃ 𝑤𝑇 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧𝑇𝑧𝑇 ) ) ) )