Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
⊢ ( 𝑦 = 𝑇 → ( 𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑧 ⊆ 𝑇 ) ) |
2 |
|
rexeq |
⊢ ( 𝑦 = 𝑇 → ( ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑦 = 𝑇 → ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) ) |
4 |
3
|
raleqbi1dv |
⊢ ( 𝑦 = 𝑇 → ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) ) |
5 |
|
pweq |
⊢ ( 𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇 ) |
6 |
|
breq2 |
⊢ ( 𝑦 = 𝑇 → ( 𝑧 ≈ 𝑦 ↔ 𝑧 ≈ 𝑇 ) ) |
7 |
|
eleq2 |
⊢ ( 𝑦 = 𝑇 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑇 ) ) |
8 |
6 7
|
orbi12d |
⊢ ( 𝑦 = 𝑇 → ( ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
9 |
5 8
|
raleqbidv |
⊢ ( 𝑦 = 𝑇 → ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
10 |
4 9
|
anbi12d |
⊢ ( 𝑦 = 𝑇 → ( ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |
11 |
|
df-tsk |
⊢ Tarski = { 𝑦 ∣ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) } |
12 |
10 11
|
elab2g |
⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |