Step |
Hyp |
Ref |
Expression |
1 |
|
eltsms.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eltsms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
eltsms.s |
⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) |
4 |
|
eltsms.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
5 |
|
eltsms.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
6 |
|
eltsms.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
eltsms.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
|
eqid |
⊢ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
9 |
1 2 3 8 4 6 7
|
tsmsval |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) ) |
11 |
1 2
|
istps |
⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
12 |
5 11
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
13 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
14 |
3 13 8 6
|
tsmsfbas |
⊢ ( 𝜑 → ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ∈ ( fBas ‘ 𝑆 ) ) |
15 |
1 3 4 6 7
|
tsmslem1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝐵 ) |
16 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : 𝑆 ⟶ 𝐵 ) |
17 |
|
eqid |
⊢ ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) = ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
18 |
17
|
flffbas |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ∈ ( fBas ‘ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : 𝑆 ⟶ 𝐵 ) → ( 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ) ) |
19 |
12 14 16 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ) ) |
20 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
21 |
|
inex1g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
22 |
6 20 21
|
3syl |
⊢ ( 𝜑 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
23 |
3 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → 𝑆 ∈ V ) |
25 |
|
rabexg |
⊢ ( 𝑆 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) |
27 |
26
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑧 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) |
28 |
|
imaeq2 |
⊢ ( 𝑤 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
29 |
28
|
sseq1d |
⊢ ( 𝑤 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } → ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
30 |
13 29
|
rexrnmptw |
⊢ ( ∀ 𝑧 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
31 |
27 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
32 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
33 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ 𝑆 |
34 |
|
ovex |
⊢ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ V |
35 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
36 |
34 35
|
dmmpti |
⊢ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = 𝑆 |
37 |
33 36
|
sseqtrri |
⊢ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
38 |
|
funimass3 |
⊢ ( ( Fun ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ∧ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) → ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ) ) |
39 |
32 37 38
|
mp2an |
⊢ ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ) |
40 |
35
|
mptpreima |
⊢ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) = { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } |
41 |
40
|
sseq2i |
⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } ) |
42 |
|
ss2rab |
⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
43 |
39 41 42
|
3bitri |
⊢ ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
44 |
43
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
45 |
31 44
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
46 |
45
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
47 |
46
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
49 |
10 19 48
|
3bitrd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |