Metamath Proof Explorer


Theorem eltx

Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion eltx ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑝𝑆𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) )
2 1 txval ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) )
3 2 eleq2d ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ 𝑆 ∈ ( topGen ‘ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ) )
4 1 txbasex ( ( 𝐽𝑉𝐾𝑊 ) → ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ∈ V )
5 eltg2b ( ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ∈ V → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝𝑆𝑧 ∈ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝𝑧𝑧𝑆 ) ) )
6 4 5 syl ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝𝑆𝑧 ∈ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝𝑧𝑧𝑆 ) ) )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 xpex ( 𝑥 × 𝑦 ) ∈ V
10 9 rgen2w 𝑥𝐽𝑦𝐾 ( 𝑥 × 𝑦 ) ∈ V
11 eqid ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) )
12 eleq2 ( 𝑧 = ( 𝑥 × 𝑦 ) → ( 𝑝𝑧𝑝 ∈ ( 𝑥 × 𝑦 ) ) )
13 sseq1 ( 𝑧 = ( 𝑥 × 𝑦 ) → ( 𝑧𝑆 ↔ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) )
14 12 13 anbi12d ( 𝑧 = ( 𝑥 × 𝑦 ) → ( ( 𝑝𝑧𝑧𝑆 ) ↔ ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) )
15 11 14 rexrnmpo ( ∀ 𝑥𝐽𝑦𝐾 ( 𝑥 × 𝑦 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝𝑧𝑧𝑆 ) ↔ ∃ 𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) )
16 10 15 ax-mp ( ∃ 𝑧 ∈ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝𝑧𝑧𝑆 ) ↔ ∃ 𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) )
17 16 ralbii ( ∀ 𝑝𝑆𝑧 ∈ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝𝑧𝑧𝑆 ) ↔ ∀ 𝑝𝑆𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) )
18 6 17 bitrdi ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥𝐽 , 𝑦𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝𝑆𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) )
19 3 18 bitrd ( ( 𝐽𝑉𝐾𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑝𝑆𝑥𝐽𝑦𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) )