Metamath Proof Explorer


Theorem elun

Description: Expansion of membership in class union. Theorem 12 of Suppes p. 25. (Contributed by NM, 7-Aug-1994)

Ref Expression
Assertion elun ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴 ∈ V )
2 elex ( 𝐴𝐵𝐴 ∈ V )
3 elex ( 𝐴𝐶𝐴 ∈ V )
4 2 3 jaoi ( ( 𝐴𝐵𝐴𝐶 ) → 𝐴 ∈ V )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
6 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐶𝐴𝐶 ) )
7 5 6 orbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝑥𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
8 df-un ( 𝐵𝐶 ) = { 𝑥 ∣ ( 𝑥𝐵𝑥𝐶 ) }
9 7 8 elab2g ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
10 1 4 9 pm5.21nii ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )