Metamath Proof Explorer


Theorem elun1

Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993)

Ref Expression
Assertion elun1 ( 𝐴𝐵𝐴 ∈ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssun1 𝐵 ⊆ ( 𝐵𝐶 )
2 1 sseli ( 𝐴𝐵𝐴 ∈ ( 𝐵𝐶 ) )