Metamath Proof Explorer


Theorem eluni

Description: Membership in class union. (Contributed by NM, 22-May-1994)

Ref Expression
Assertion eluni ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 𝐵𝐴 ∈ V )
2 elex ( 𝐴𝑥𝐴 ∈ V )
3 2 adantr ( ( 𝐴𝑥𝑥𝐵 ) → 𝐴 ∈ V )
4 3 exlimiv ( ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) → 𝐴 ∈ V )
5 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
6 5 anbi1d ( 𝑦 = 𝐴 → ( ( 𝑦𝑥𝑥𝐵 ) ↔ ( 𝐴𝑥𝑥𝐵 ) ) )
7 6 exbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑦𝑥𝑥𝐵 ) ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )
8 df-uni 𝐵 = { 𝑦 ∣ ∃ 𝑥 ( 𝑦𝑥𝑥𝐵 ) }
9 7 8 elab2g ( 𝐴 ∈ V → ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )
10 1 4 9 pm5.21nii ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )