Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | eluni2 | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
2 | eluni | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) | |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |