Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluni2 | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
| 2 | eluni | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
| 4 | 1 2 3 | 3bitr4i | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |