Metamath Proof Explorer


Theorem eluni2

Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999)

Ref Expression
Assertion eluni2 ( 𝐴 𝐵 ↔ ∃ 𝑥𝐵 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 exancom ( ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
2 eluni ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
3 df-rex ( ∃ 𝑥𝐵 𝐴𝑥 ↔ ∃ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
4 1 2 3 3bitr4i ( 𝐴 𝐵 ↔ ∃ 𝑥𝐵 𝐴𝑥 )