Metamath Proof Explorer


Theorem eluni2f

Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eluni2f.1 𝑥 𝐴
eluni2f.2 𝑥 𝐵
Assertion eluni2f ( 𝐴 𝐵 ↔ ∃ 𝑥𝐵 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 eluni2f.1 𝑥 𝐴
2 eluni2f.2 𝑥 𝐵
3 exancom ( ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
4 1 2 elunif ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
5 df-rex ( ∃ 𝑥𝐵 𝐴𝑥 ↔ ∃ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
6 3 4 5 3bitr4i ( 𝐴 𝐵 ↔ ∃ 𝑥𝐵 𝐴𝑥 )