Metamath Proof Explorer


Theorem eluniab

Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion eluniab ( 𝐴 { 𝑥𝜑 } ↔ ∃ 𝑥 ( 𝐴𝑥𝜑 ) )

Proof

Step Hyp Ref Expression
1 eluni ( 𝐴 { 𝑥𝜑 } ↔ ∃ 𝑦 ( 𝐴𝑦𝑦 ∈ { 𝑥𝜑 } ) )
2 nfv 𝑥 𝐴𝑦
3 nfsab1 𝑥 𝑦 ∈ { 𝑥𝜑 }
4 2 3 nfan 𝑥 ( 𝐴𝑦𝑦 ∈ { 𝑥𝜑 } )
5 nfv 𝑦 ( 𝐴𝑥𝜑 )
6 eleq2w ( 𝑦 = 𝑥 → ( 𝐴𝑦𝐴𝑥 ) )
7 eleq1w ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { 𝑥𝜑 } ) )
8 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
9 7 8 bitrdi ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜑 ) )
10 6 9 anbi12d ( 𝑦 = 𝑥 → ( ( 𝐴𝑦𝑦 ∈ { 𝑥𝜑 } ) ↔ ( 𝐴𝑥𝜑 ) ) )
11 4 5 10 cbvexv1 ( ∃ 𝑦 ( 𝐴𝑦𝑦 ∈ { 𝑥𝜑 } ) ↔ ∃ 𝑥 ( 𝐴𝑥𝜑 ) )
12 1 11 bitri ( 𝐴 { 𝑥𝜑 } ↔ ∃ 𝑥 ( 𝐴𝑥𝜑 ) )