Metamath Proof Explorer


Theorem elunif

Description: A version of eluni using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses elunif.1 𝑥 𝐴
elunif.2 𝑥 𝐵
Assertion elunif ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 elunif.1 𝑥 𝐴
2 elunif.2 𝑥 𝐵
3 eluni ( 𝐴 𝐵 ↔ ∃ 𝑦 ( 𝐴𝑦𝑦𝐵 ) )
4 nfcv 𝑥 𝑦
5 1 4 nfel 𝑥 𝐴𝑦
6 4 2 nfel 𝑥 𝑦𝐵
7 5 6 nfan 𝑥 ( 𝐴𝑦𝑦𝐵 )
8 nfv 𝑦 ( 𝐴𝑥𝑥𝐵 )
9 eleq2w ( 𝑦 = 𝑥 → ( 𝐴𝑦𝐴𝑥 ) )
10 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐵𝑥𝐵 ) )
11 9 10 anbi12d ( 𝑦 = 𝑥 → ( ( 𝐴𝑦𝑦𝐵 ) ↔ ( 𝐴𝑥𝑥𝐵 ) ) )
12 7 8 11 cbvexv1 ( ∃ 𝑦 ( 𝐴𝑦𝑦𝐵 ) ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
13 3 12 bitri ( 𝐴 𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )