Metamath Proof Explorer


Theorem elunii

Description: Membership in class union. (Contributed by NM, 24-Mar-1995)

Ref Expression
Assertion elunii ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
2 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐶𝐵𝐶 ) )
3 1 2 anbi12d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥𝑥𝐶 ) ↔ ( 𝐴𝐵𝐵𝐶 ) ) )
4 3 spcegv ( 𝐵𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝐶 ) ) )
5 4 anabsi7 ( ( 𝐴𝐵𝐵𝐶 ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝐶 ) )
6 eluni ( 𝐴 𝐶 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐶 ) )
7 5 6 sylibr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴 𝐶 )