Description: Membership in class union. (Contributed by NM, 24-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | elunii | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ ∪ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
2 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) ) |
4 | 3 | spcegv | ⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) ) ) |
5 | 4 | anabsi7 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) ) |
6 | eluni | ⊢ ( 𝐴 ∈ ∪ 𝐶 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) ) | |
7 | 5 6 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ ∪ 𝐶 ) |