Metamath Proof Explorer


Theorem elunirab

Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006)

Ref Expression
Assertion elunirab ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∃ 𝑥𝐵 ( 𝐴𝑥𝜑 ) )

Proof

Step Hyp Ref Expression
1 eluniab ( 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥𝐵𝜑 ) ) )
2 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
3 2 unieqi { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
4 3 eleq2i ( 𝐴 { 𝑥𝐵𝜑 } ↔ 𝐴 { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
5 df-rex ( ∃ 𝑥𝐵 ( 𝐴𝑥𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ( 𝐴𝑥𝜑 ) ) )
6 an12 ( ( 𝑥𝐵 ∧ ( 𝐴𝑥𝜑 ) ) ↔ ( 𝐴𝑥 ∧ ( 𝑥𝐵𝜑 ) ) )
7 6 exbii ( ∃ 𝑥 ( 𝑥𝐵 ∧ ( 𝐴𝑥𝜑 ) ) ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥𝐵𝜑 ) ) )
8 5 7 bitri ( ∃ 𝑥𝐵 ( 𝐴𝑥𝜑 ) ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥𝐵𝜑 ) ) )
9 1 4 8 3bitr4i ( 𝐴 { 𝑥𝐵𝜑 } ↔ ∃ 𝑥𝐵 ( 𝐴𝑥𝜑 ) )