Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) → 𝐴 ∈ dom 𝐹 ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ) ) |
4 |
3
|
rspcev |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom 𝐹 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) |
5 |
1 4
|
mpancom |
⊢ ( 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) → ∃ 𝑥 ∈ dom 𝐹 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) |
6 |
5
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom 𝐹 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
elunirn |
⊢ ( Fun 𝐹 → ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ dom 𝐹 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ) → ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ dom 𝐹 𝐵 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
6 8
|
mpbird |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ ( 𝐹 ‘ 𝐴 ) ) → 𝐵 ∈ ∪ ran 𝐹 ) |