Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ V ) |
2 |
|
fof |
⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) |
3 |
|
ax-hilex |
⊢ ℋ ∈ V |
4 |
|
fex |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 ∈ V ) |
6 |
5
|
adantr |
⊢ ( ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) → 𝑇 ∈ V ) |
7 |
|
foeq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 : ℋ –onto→ ℋ ↔ 𝑇 : ℋ –onto→ ℋ ) ) |
8 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
10 |
8 9
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
12 |
11
|
2ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
13 |
7 12
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
14 |
|
df-unop |
⊢ UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |
15 |
13 14
|
elab2g |
⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
16 |
1 6 15
|
pm5.21nii |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |