| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unoplin | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇  ∈  LinOp )  | 
						
						
							| 2 | 
							
								
							 | 
							elunop | 
							⊢ ( 𝑇  ∈  UniOp  ↔  ( 𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simplbi | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –onto→  ℋ )  | 
						
						
							| 4 | 
							
								
							 | 
							unopnorm | 
							⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑥  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ralrimiva | 
							⊢ ( 𝑇  ∈  UniOp  →  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) )  | 
						
						
							| 6 | 
							
								1 3 5
							 | 
							3jca | 
							⊢ ( 𝑇  ∈  UniOp  →  ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( 𝑇  ∈  UniOp  ↔  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  UniOp ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( 𝑇  ∈  LinOp  ↔  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp ) )  | 
						
						
							| 9 | 
							
								
							 | 
							foeq1 | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( 𝑇 :  ℋ –onto→  ℋ  ↔  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ ) )  | 
						
						
							| 10 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  𝑦  →  ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( normℎ ‘ 𝑥 )  =  ( normℎ ‘ 𝑦 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 )  ↔  ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 )  ↔  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( 𝑇 ‘ 𝑦 )  =  ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveqeq2d | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  ↔  ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralbidv | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  ↔  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							bitrid | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 )  ↔  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 18 | 
							
								8 9 17
							 | 
							3anbi123d | 
							⊢ ( 𝑇  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) )  ↔  ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp  ∧  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1 | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( (  I   ↾   ℋ )  ∈  LinOp  ↔  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp ) )  | 
						
						
							| 20 | 
							
								
							 | 
							foeq1 | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( (  I   ↾   ℋ ) :  ℋ –onto→  ℋ  ↔  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq1 | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( (  I   ↾   ℋ ) ‘ 𝑦 )  =  ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveqeq2d | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  ↔  ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ralbidv | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  ↔  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) )  | 
						
						
							| 24 | 
							
								19 20 23
							 | 
							3anbi123d | 
							⊢ ( (  I   ↾   ℋ )  =  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  →  ( ( (  I   ↾   ℋ )  ∈  LinOp  ∧  (  I   ↾   ℋ ) :  ℋ –onto→  ℋ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) )  ↔  ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp  ∧  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							idlnop | 
							⊢ (  I   ↾   ℋ )  ∈  LinOp  | 
						
						
							| 26 | 
							
								
							 | 
							f1oi | 
							⊢ (  I   ↾   ℋ ) :  ℋ –1-1-onto→  ℋ  | 
						
						
							| 27 | 
							
								
							 | 
							f1ofo | 
							⊢ ( (  I   ↾   ℋ ) :  ℋ –1-1-onto→  ℋ  →  (  I   ↾   ℋ ) :  ℋ –onto→  ℋ )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							ax-mp | 
							⊢ (  I   ↾   ℋ ) :  ℋ –onto→  ℋ  | 
						
						
							| 29 | 
							
								
							 | 
							fvresi | 
							⊢ ( 𝑦  ∈   ℋ  →  ( (  I   ↾   ℋ ) ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 30 | 
							
								29
							 | 
							fveq2d | 
							⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							rgen | 
							⊢ ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  | 
						
						
							| 32 | 
							
								25 28 31
							 | 
							3pm3.2i | 
							⊢ ( (  I   ↾   ℋ )  ∈  LinOp  ∧  (  I   ↾   ℋ ) :  ℋ –onto→  ℋ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( (  I   ↾   ℋ ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) )  | 
						
						
							| 33 | 
							
								18 24 32
							 | 
							elimhyp | 
							⊢ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp  ∧  if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							simp1i | 
							⊢ if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  LinOp  | 
						
						
							| 35 | 
							
								33
							 | 
							simp2i | 
							⊢ if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) :  ℋ –onto→  ℋ  | 
						
						
							| 36 | 
							
								33
							 | 
							simp3i | 
							⊢ ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) ) ‘ 𝑦 ) )  =  ( normℎ ‘ 𝑦 )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							lnopunii | 
							⊢ if ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) ,  𝑇 ,  (  I   ↾   ℋ ) )  ∈  UniOp  | 
						
						
							| 38 | 
							
								7 37
							 | 
							dedth | 
							⊢ ( ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) )  →  𝑇  ∈  UniOp )  | 
						
						
							| 39 | 
							
								6 38
							 | 
							impbii | 
							⊢ ( 𝑇  ∈  UniOp  ↔  ( 𝑇  ∈  LinOp  ∧  𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 ) ) )  |