Step |
Hyp |
Ref |
Expression |
1 |
|
unoplin |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |
2 |
|
elunop |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
3 |
2
|
simplbi |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –onto→ ℋ ) |
4 |
|
unopnorm |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) |
5 |
4
|
ralrimiva |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) |
6 |
1 3 5
|
3jca |
⊢ ( 𝑇 ∈ UniOp → ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) ) |
7 |
|
eleq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ UniOp ↔ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ UniOp ) ) |
8 |
|
eleq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ LinOp ↔ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ) ) |
9 |
|
foeq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 : ℋ –onto→ ℋ ↔ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ ) ) |
10 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑦 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
14 |
|
fveq1 |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) = ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) |
15 |
14
|
fveqeq2d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
17 |
13 16
|
syl5bb |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
18 |
8 9 17
|
3anbi123d |
⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) ↔ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) ) |
19 |
|
eleq1 |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( I ↾ ℋ ) ∈ LinOp ↔ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ) ) |
20 |
|
foeq1 |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( I ↾ ℋ ) : ℋ –onto→ ℋ ↔ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ ) ) |
21 |
|
fveq1 |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( I ↾ ℋ ) ‘ 𝑦 ) = ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) |
22 |
21
|
fveqeq2d |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
23 |
22
|
ralbidv |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
24 |
19 20 23
|
3anbi123d |
⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) : ℋ –onto→ ℋ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ↔ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) ) |
25 |
|
idlnop |
⊢ ( I ↾ ℋ ) ∈ LinOp |
26 |
|
f1oi |
⊢ ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ |
27 |
|
f1ofo |
⊢ ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ –onto→ ℋ ) |
28 |
26 27
|
ax-mp |
⊢ ( I ↾ ℋ ) : ℋ –onto→ ℋ |
29 |
|
fvresi |
⊢ ( 𝑦 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑦 ) = 𝑦 ) |
30 |
29
|
fveq2d |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
31 |
30
|
rgen |
⊢ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) |
32 |
25 28 31
|
3pm3.2i |
⊢ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) : ℋ –onto→ ℋ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
33 |
18 24 32
|
elimhyp |
⊢ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
34 |
33
|
simp1i |
⊢ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
35 |
33
|
simp2i |
⊢ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) : ℋ –onto→ ℋ |
36 |
33
|
simp3i |
⊢ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) |
37 |
34 35 36
|
lnopunii |
⊢ if ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) , 𝑇 , ( I ↾ ℋ ) ) ∈ UniOp |
38 |
7 37
|
dedth |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) → 𝑇 ∈ UniOp ) |
39 |
6 38
|
impbii |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ) ) |