Step |
Hyp |
Ref |
Expression |
1 |
|
utopval |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
2 |
1
|
eleq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ 𝐴 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) ) |
3 |
|
sseq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
5 |
4
|
raleqbi1dv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
6 |
5
|
elrab |
⊢ ( 𝐴 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
7 |
2 6
|
bitrdi |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |
8 |
|
elex |
⊢ ( 𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V ) |
9 |
8
|
a1i |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V ) ) |
10 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
12 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
13 |
11 12
|
ssexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
14 |
13
|
ex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) ) |
15 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
16 |
15
|
a1i |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) ) |
17 |
9 14 16
|
pm5.21ndd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |
19 |
7 18
|
bitrd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |