Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | eluz2b1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z | ⊢ 2 ∈ ℤ | |
2 | 1 | eluz1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
3 | 1z | ⊢ 1 ∈ ℤ | |
4 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) | |
5 | 3 4 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) |
6 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
7 | 6 | breq1i | ⊢ ( 2 ≤ 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) |
8 | 5 7 | bitr4di | ⊢ ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ 2 ≤ 𝑁 ) ) |
9 | 8 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
10 | 2 9 | bitr4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |