Metamath Proof Explorer


Theorem eluz2b1

Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)

Ref Expression
Assertion eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 1 eluz1i ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) )
3 1z 1 ∈ ℤ
4 zltp1le ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) )
5 3 4 mpan ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) )
6 df-2 2 = ( 1 + 1 )
7 6 breq1i ( 2 ≤ 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 )
8 5 7 bitr4di ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ 2 ≤ 𝑁 ) )
9 8 pm5.32i ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) )
10 2 9 bitr4i ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )