| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 4 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 1 < 𝑁 → 1 ≤ 𝑁 ) ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( 𝑁 ∈ ℤ → ( 1 < 𝑁 → 1 ≤ 𝑁 ) ) |
| 6 |
5
|
imdistani |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| 7 |
|
elnnz1 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 9 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 1 < 𝑁 ) |
| 10 |
8 9
|
jca |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 11 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 12 |
11
|
anim1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
| 13 |
10 12
|
impbii |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 14 |
1 13
|
bitri |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |