Metamath Proof Explorer


Theorem eluz2gt1

Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion eluz2gt1 ( 𝑁 ∈ ( ℤ ‘ 2 ) → 1 < 𝑁 )

Proof

Step Hyp Ref Expression
1 eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
2 1 simprbi ( 𝑁 ∈ ( ℤ ‘ 2 ) → 1 < 𝑁 )