Metamath Proof Explorer


Theorem eluz2nn

Description: An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018)

Ref Expression
Assertion eluz2nn ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 1le2 1 ≤ 2
3 eluzuzle ( ( 1 ∈ ℤ ∧ 1 ≤ 2 ) → ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ( ℤ ‘ 1 ) ) )
4 1 2 3 mp2an ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ( ℤ ‘ 1 ) )
5 nnuz ℕ = ( ℤ ‘ 1 )
6 4 5 eleqtrrdi ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℕ )