Metamath Proof Explorer


Theorem eluz3nn

Description: An integer greater than or equal to 3 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018) (Proof shortened by AV, 30-Nov-2025)

Ref Expression
Assertion eluz3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 uzuzle23 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
2 eluz2nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℕ )
3 1 2 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )